

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Investigations of Long-range and Short-range Wakefields on Beam Dynamics in TESLA-Type Superconducting rf Cavities (LRW/SRW): Update

SLAC Collaborators: Bryce Jacobson (Co-PI), Feng Zhou, John Sikora, Jorge Diaz-Cruz, Auralee Edelen FNAL Collaborators: Alex Lumpkin (Co-PI), Chip Edstrom, Jinhao Ruan, Peter Prieto, Randy Thurman-Keup

Alex Lumpkin and Randy Thurman-Keup AST Meeting 12 March 2021 Studies on 02-04-21 CC2 02-18-21 CM2

Objective 2: Extend SRW Data Base for ASTRA Benchmark

- Investigate LRW/SRW effects at lower energy: 20.5 MeV. 2x8
- Prerequisite is higher charge for streak camera imaging of SRW. Run 2 used 0.25, 0.5, 1.0, and 1.5 nC/b.
- OTR signal reduced at 20.5 MeV vs 41 MeV. Use 40 images.
- SRW kick angle will be enhanced by lower energy. Would have been more if 8 and 8 MeV split instead of 16 and 0 MeV in CC1 and CC2, respectively. Use V103 then V101 scans.
- New CC2 LRW causing beam centroid slew/oscillation will be reduced at X121 by reduced beta function. Q118-120 ON.
- SRW is a submicropulse effect so could reduce bunch # from 50 to 25 b or 10 b subject to S/N ratio and statistics. Need Q.
- Entrance slit of streak camera will set spatial acceptance window in x plane.

CC2 HOMs Probed with V103 Scan

02-04-21

- HOM signals for different charges, 500 pC/b and 750 pC/b.
- 1.75-GHz band. Open iris above 500 pC/b. Double VC spot.

CC2 HOM Spectral Analysis Enabled with Better Trigger

- Look at start of signals to determine trigger jitter
 - Full range of these 8
 acquisitions was 170 ps, rms
 was 55 ps.
- Adjust arrival time of each to coincide
 - Use frequency dependent phase adjustment

RTK Plots

CC2 V103 Scan Show HOM Near Resonances

02-04-21

CC2 HOM amplitude and phase information. Dipole Modes 7,
 14 with diff. frequencies of 267 and 181 kHz with beam harm...

Q118-120 used to Focus Beam at X121 and B121

- The quadrupole focusing effect is shown in the reduced beam submacropulse centroid oscillation from B120PV to B121PV.
- This is summed over in the synchroscan streak image.

V103 Scan: X121 Streak Camera Image Effects

02-04-21

- Initial image projections for focus mode and streak images.50b.
- Streak R1, 0.5nC/b, 40 images, 38% larger y projection at -1.0 A.

Objective 3: Evaluate HOMs in CM2 with SLAC Chassis

- Investigate HOMs in CM2 with the commissioned SLAC boxes with two amplifier options (8 ch). Setup for dipolar modes. 2x8
- Higher charges than 125 pC/b would help rf BPMs and LRWs.
- Record HOMs as found in 8 cavities, US and DS.
- Track Modes in HOM signals with Peter's new box.
- Reduce HOMs with H/V125 if possible.
- Record BPM array data in HE beamline. Record HOM spectra.
- Record data sets for Machine Learning training evaluation.
- Measure beam images in high energy (HE) beamline.
- John Sikora previously showed the SLAC chassis HOM data at 100 pC/b and lower charges, single bunch.

Techniques Will be Applied to FAST Cryomodule

- Possible to extend HOM studies techniques to higher charges and to the cryomodule using an 80-m lattice and 11 rf BPMs distributed in z downstream of it, 8 SLAC HOM det., Run 3
- Run at 100-MeV total energy with 25 MeV into CM2.

Revised YMS

CM2 HOM Waveforms Seen Online

02-18-21

- US for Board 0, C1-8, DS for Board 1, C1,8: 3 HOM Bands.
- 50 b macropulse is 16.6-µs long in waveforms below.

 1 red
 C1 US 1.75 GHz
 5 purple
 C5 US 1.75 GHz

 2 blue
 C2 US 1.75 GHz
 6 lt blue
 C6 US 1.75 GHz

 3 green
 C3 US 1.75 GHz
 7 pink
 C7 US 1.75 GHz

 4 yellow
 C4 US 1.75 GHz
 8 grey
 C8 US 1.75 GHz

1 red C1 DS 1.75 GHz 5 purple C1 DS 3.25 GHz 2 blue C8 DS 1.75 GHz 6 lt blue C8 DS 3.25 GHz 3 green C1 DS 2.58 GHz 7 pink ---4 yellow C8 DS 2.58 GHz 8 grey ---

V125 scan: CM2 HOMs: 8 US and 8 DS!

02-18-21

- Used x3 correction for SLAC attenuators at larger steerings.
- V125 Corrector provides 2 mrad/1A angles into CM2.
- Two SLAC chassis enabled these experiments on all 16 chan.

Comprehensive Set of Spectral Data on Vertical Polarization Mode Components Acquired on CM2 2-18-21 SLAC MATIONAL MATION

- C1 US example uses 2 of 32 slides from Randy.
- We show the 18 modes in passband and zoom in on Mode 7 in V125 scan. Near resonance.
- Amplitude and phase.

Injection into CM2 and Down Stream at B441

02-18-21

- BPMs show submacropulse oscillation before CM2 in B120,125, and 130 attributed to the off-resonance CC2 cavity.
- Some steering effects on submacropulse scale in B441.

V125 Scan Downstream Vert. BPMs 400 pC/b

02-18-21

Vertical Pattern (z) Changed vs Nov.-Dec. 2020.

V125 scan: CM2 Q HOMs: 2 US and 2 DS

- 02-18-21
- Use Hybrid box to explore 3.25-GHz HOM band.
- Variations seen with scan except for C1 US.
- 400 pC/b, 50b, 100-shot average.

Summary

- Very successful shifts with V103 scan on CC2 (2-4-21) and V125 scan looking at the CM2 HOMs with two SLAC chassis and Peter's new HOM box (2-18-21). First HOM phase info.
- CM2 HOM signals are reduced compared to those of CC1 and CC2. Used 1 wideband Amplifier in each HOM channel.
- We have reduced HOMs by steering at H/V125, ~4m upstream of CM2. Scans provide data base for Mach. Learning Training.
- Randy has first HOM mode amplitude and phase results in CM2 for vertical polarization components.
- Plan to process data towards beam offset monitor (BOM) in C1.
- We need the critical H125 scan shift under these conditions with B130 working and higher charges as on 2-18-21.
 Requested, but not approved by ISC last week (Non-technical).

US DOE GARD Beam Test Facilities

Complementary and diverse

Capabilities:		ATF	AWA	BELLA	FACET-II	FAST
Operation model:						
National User Facility		✓			✓	
Accelerator Stewardship		✓				
Collaboration models			✓	✓		✓
Beams and acceler	rators:					
~100 MeV electrons		✓	✓			✓
10 GeV electron beams					✓	
10 GeV positron beams					planned	
High charge electron bunches			✓			
Proton beams						planned
NC S-band and X-band		✓			✓	
NC L-Band	SC L-Band linac		✓			
SC L-Band linac	OO E Dand iii lac					✓
Storage ring	Storage ring					✓
Lasers:	-					
TW class 0.8 μm laser (Ti:Sapphire)		✓		✓	✓	
PW class 0.8 μm laser (Ti:Sapphire)				✓		
TW class 10 µm laser (CO ₂)		✓				
Plasmas:		·				
Plasma capillaries		√ (2 cm)	√ (2 cm)	√ (10 cm)		
Gas Jets		✓		✓	✓	
Heat pipe oven					✓	
Hollow channel			✓		✓	
V. Yakimenko, Sept. 24,	2020			•		

- > TESLA CAVITY
 - 2 HOM couplers
- > DIPOLE HOM
 - $V_x(t) \propto x \cdot e^{-\frac{t}{2\tau}} \sin(\omega t)$
 - $V_{x'}(t) \propto x' \cdot e^{-\frac{t}{2\tau}} \cos(\omega t)$

Expected HOMs in TESLA Cavities*						
Mode #	Freq.(GHz)	$R/Q (\Omega/cm^2)$				
MM-6	1.71	5.53				
MM-7	1.73	7.78				
MM-13	1.86	3.18				
MM-14	1.87	4.48				
MM-30	2.58	13.16				

^{*}R. Wanzenberg, DESY 2001-33

Dipole Mode

N.B. Modes excited in the cavities at frequencies Higher than the accelerating mode are HOMs. Amplitude of specific dipole mode, $A_d \sim q \times r \times (R/Q)$

THORSTEN HELLERT | FEL SEMINAR | JULY 11 2017 | PAGE 12

T. Hellert 7/11/17 DESY Seminar

BPM Vertical Array Data Downstream of CM2-C8 Show Slew!

- Cold B418V data and others show offset dependence in scan. V125 corrector is 4 m before CM2 and ~2mrad/A.
 11-20-20 +12-03-20
- Mean of each array subtracted from each bunch position for the plots.

HE Beamline BPM Effects(T) During V125 Scan

11-20-20

C8_c at 33.603

Some submacropulse centroid oscillations are seen in BPM array data for 50 b or 16.6 µs: ~240 kHz diff. freq. plus slew.

RTK Plot rev.

BPM Array Data Downstream of CM2 Show Oscillation!

- B480V data show ~240-kHz Vertical Oscillation with offset dependence. V125 corrector is 4 m before CM2. 11-20-20
- Randy subtracted a linear slew for each data set. 50b sort.

Fermilab

RTK Plot rev.

